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The numerical solution of the vibrational-rotational Schriidinger equation for the 
bound states of diatomic molecules is discussed. A formula for starting the numerical 
integration at large internuclear distances, based on the requirement that the solution 
is bounded in all space, is given. Expressions are derived for the errors in the second 
derivative of the solution and the eigenvalues when the Numerov method of numerical 
integration is used. Based on these expressions, a method of choosing the step size is 
described which allows eigenvalues to be calculated to specified or optimum accuracy. 
Results are reported for an H, Morse potential and an experimental Ar, curve. 

INTRODUCTION 

The quantum mechanical problem of the diatomic molecule is normally treated 
by the method introduced by Born and Oppenheimer [l]. They showed that 
usually, to a very good approximation, the wavefunction of a molecule can be 
written as the factored product of an electronic wavefunction and nuclear 
vibrational-rotational wavefunction. The electronic wavefunction is obtained as 
the solution to the Schrodinger wave equation for the motion of electrons in a 
potential field due to fixed nuclei. The eigenfunctions and eigenvalues for this 
potential are parametric functions of the nuclear coordinates. The energy eigenvalue 
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for a given electronic state, taken as a function of the nuclear coordinates, acts as 
an effective potential energy in the Hamiltonian for the nuclear vibrational- 
rotational factor. 

The validity of this approximation follows from the large nuclear masses in 
comparison with the electronic masses. This results in the picture of electronic 
motion in the presence of relatively slow moving, localized nuclei. Born and 
Oppenheimer assumed that nuclear motion consists of small amplitude, normal 
mode vibrations about an appropriate equilibrium. 

The equation for the electronic motion is, of course, by itself, a formidable 
problem, and except for single electron cases cannot be solved exactly. It can be 
dealt with by a variety of variational approaches, most notably variants of the 
SCF (Self-Consistent Field) method. The advent of large high-speed digital com- 
puters has made possible the solution, with increasing accuracy, of these many 
electron problems. 

Often one may be interested only in properties of the molecule at equilibrium so 
that it is necessary only to solve the electronic equation for this nuclear configu- 
ration. However, for many phenomena it is necessary to consider other nuclear 
configurations as well. This is for instance the case for a detailed understanding 
of band spectra. Hence one needs to determine the total wavefunction; this 
paper is concerned with the nuclear vibrational-rotational factor of this total 
wavefunction. 

The numerical integration of the radial equation obtained from the nuclear 
vibrational-rotational equation has been treated by Cooley [2], using a uniform 
integration step size, and Blatt [3], using a step size which varies with internuclear 
distance. The use of uniform step size generally does not yield maximum efficiency 
and/or accuracy. A method for automatically determining an optimum variable 
integration mesh is clearly desirable because it eliminates the necessity of exper- 
imenting with different integration meshes and allows the numerical integration 
to be performed with as few points as possible to yield an acceptable accuracy in 
final results. Blatt’s method is based on the unproven assumption that the relative 
error in the wavefunction at any point is the sum of the relative errors made in each 
integration step up to that point. Furthermore, his method requires a prior estimate 
of the total number of integration points to be used. A method of selecting 
integration points independent of such deficiencies is thus desirable. 

After presenting a brief summary of the most suitable procedures for computing 
eigenfunctions and eigenvalues, an expression will be derived for the eigenvalue 
error due to the approximation of the differential equation by a difference equation. 
This expression is the basis for the selection of the integration step size and an 
estimate of eigenvalue errors. 

The application of these methods will be demonstrated for the H, Morse 
Potential and an experimental argon-argon potential. 
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SOLVING THE DIFFERENTIAL EQUATION 

In atomic units [4], the differential equation to be considered here is 

- % + 2PWP) R(P) + 
J(J + 1) 

$ R(p) - 2pWp) = 0, (1) 

where p is the internuclear separation, E.L is the reduced mass of the nuclei, U(p) is 
the eigenvalue of the electronic Hamiltonian (assuming nuclear separation fixed 
at p), with nuclear repulsion included, and J is the total angular momentum. 

In the iterative procedure most commonly used to obtain eigenvalues and 
eigenfunctions one constructs, by numerical integration outward from sufficiently 
small p, the solution R,(p) which vanishes at the origin, and by numerical integration 
inward from large p, the solution R,(p) which vanishes as p -+ co. This process is, 
of course, carried out for a trial value E of the energy. Each of the solutions is 
determined to within a normalization factor. At a suitable match point pm these 
normalization factors can be chosen so that R&I,) = R&p,). If we now also 
demand that R,,‘(p,) = R,‘(p,), this can only be satisfied for certain discrete values 
of E. If N is the sum of the number of nodes of R, in the interval 0 < p < pm and 
the number of nodes of R, in the interval pm < p < co, the discrete eigenvalue EN , 
whose eigenfunction has N nodes in the interval 0 < p < cc is approximately 
given by [5] 

Using the improved eigenvalue estimate given by Eq. (2) the entire procedure is 
repeated until convergence has been achieved. 

The integrations of R,,(p) and R,(p) may be started by approximate analytic 
formulas derived from the differential equation (1) for sufficiently small and 
large p, respectively. If the solution is sufficiently small at the starting point, 
compared to its maximum value, large errors in the starting formula will have 
negligible effect on the final result [3]. This is always the case for R,,(p) since 
the steep nuclear repulsion term in cl(p) causes the wavefunction to fall off 
rapidly as p + 0. However for large p, particularly for values of E near the 
dissociation limit, the wavefunction may decay so slowly that it may not be feasible 
to choose the starting point where it is sufficiently small. Therefore, it seems 
worthwhile to discuss the starting procedures in this case. 

For large p the potential may be expanded as 

U(p) = c Akp-“. 
k-1 
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The index k, of the first nonzero term of this series depends on the nature of the 
dissociation products [6]. 

For short-range potentials (A, = 0) we expect the proper solutions of Eq. (I) 
to be decaying exponentials [7]. However, for A, # 0 (ion-ion dissociation) the 
asymptotic behavior of the solutions should be hydrogenic, i.e., pae--rp. Therefore, 
we propose the expansion 

R,(p) = NmpaemrD 1 Rk’p-“, 
?L=O 

R$’ = 1. (4) 

Substituting into Eq. (1) and dividing out by N,p”lecfD we obtain 

where 

cp = -(2 + 2/&E), 

cjn) = 2/-LA, + 2E(cy - n), 

c?’ = -(a - n)(a - n - 1) + 2pAg + J(J + I), 

(5) 

(6) 

Cjn’ = 2pAd, i > 2. 

Expanding, and requiring that the sum of the coefficients of the same power of p 
vanishes, we find 

E = *(--2/LE)l~~, 

01 = -/LA&, 
(7) 

R’“’ = m -El CjT,i’ &i’/C;“‘. 

We reject the minus sign in the first of Eqs. (7) since it leads to ill-behaved 
solutions. The second equation shows, as expected, that, except for long-range 
potentials, the leading term in the solution R,(p) is a decaying exponential. 
Substituting for 01 and E in Eqs. (6) allows one to use the third of Eqs. (7) as the 
recursion relation to determine the coefficients Rc) (with R$ = 1). 

NUMERICAL INTEGRATION STEP SIZE 

There are several methods described in the literature for numerically integrating 
a differential equation of the type 

R”(p) = G(P) R(P). (8) 
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The simplest and most accurate method, and the one to be considered in this paper, 
is based on the numerical integration formula of Numerov [8] 

[ 1 - ; G(p + h)] R(p + h) - [2 + ; Wd] %‘) 

+ [ 1 - ; G(p - h)] R(p - h) = 0. (9) 

This formula allows one to obtain R(p + h) if R(p) and R(p - h) are known, or 
to obtain R@ - h) if R(p) and R(p + h) are known. 

It is obvious that the accuracy of Eq. (9) in generating solutions of Eq. (8) 
depends on the selection of the grid points, in particular, the separation h. It is, 
therefore, wise to choose this separation so that the resulting solution has the 
required accuracy, as nearly as possible, while not requiring an excessive number 
of integration points. 

For this purpose it is useful to determine the accuracy of the final solutions as a 
function of h. From Taylor Series expansion of R(p + h), R(p - h), R"(p + h), 
R”(p - h) about p it can be shown that [3, 91 

R(p - h) - 2R(p) + R(p + h) - (h2/12)]R”(p - 11) + IOR” + R”(p + h)l 
= -(l/240) h6RV'(p) + . . . . (10) 

Equation (9) follows from Eq. (10) by neglecting the right-hand side, and using 
Eq. (8). 

In actual practice, due to round-off the function R(p) generated from Eq. (9) 
actually satisfies 

[l - (h2/W G(p - 41 Np - 4 - P + (5/6) h2G(p)l R(p) 
+ U - (h2/W G(p + 41 Np + 4 s r&p), (11) 

where r is the approximate relative round-off error (for the IBM 7094 Y s lo-*). 
If we define 

e(p) = rR(p) + (1/240)h6RV1(p), (12) 

one can show that the function R(p) satisfying the difference equation (11) satisfies 
the differential equation 

R”(p) LZ G(p) R(p) + 4p)lh2, (13) 

the error term being of order h4. Using first-order perturbation theory, one may 
then estimate the errors of the calculated eigenvalues to be 

We thus have a way of relating the errors made in each step of the numerical 
integration to the overall error in the final eigenvalue. 
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This result shows, as one may expect, that as h decreases, decreasing the first 
term in the integrand, the second term, due to round-off error, increases, a conse- 
quence of the fact that the number of numerical operations required increases. 
At each value of p the integrand in Eq. (14) has a minimum, Q(p) R*(p), which 
occurs at a value of h for which the two terms are of the same order of magnitude. 

One may thus “optimize” the error by choosing h so that the magnitude of the 
integrand in Eq. (14) is minimized. However, in most practical cases this accuracy 
is not needed, since it is instead desirable to keep the eigenvalue errors smaller 
than some parameter v. This is conveniently accomplished by dividing the range 
of p into constant step size regions, halving or doubling the step size h as one passes 
from one region to the next, in such a way that 

(2t~)-1 1(1/240) ~~RVI(P)I < ![r/W + 44 aa, (15) 

for all p, where v(p), a positive function, represents the desired accuracy in the 
computed eigenvalues where the wavefunction R(p) is large, but may be set at 
much higher values for asymptotically small or large p, where R(p) is so small that 
larger errors can be tolerated, since their contribution to the right-hand side of 
Eq. (14) is negligible. 

If v(p) exceeds Q(p) in order of magnitude, or if the two are of comparable 
magnitude, then the desired accuracy indicated by v(p) would be achieved, with the 
round-off error term on the right-hand side of Eq. (15) being negligible in the first 
case, but of magnitude comparable to that of the other two terms in the second 
case. If v(p) is smaller than Q(p) in the region where R(p) is large, we of course 
cannot achieve the desired accuracy. However, this problem can often be corrected, 
since most machines offer the option of doing computations in “double precision,” 
thus greatly reducing the round-off error, and hence the minimum achievable 
eigenvalue error. 

COMPUTATIONS AND RESULTS 

Morse Potential 

A convenient potential for testing our numerical procedures is the Morse 
Potential [lo] 

c’@) = De-*flh) _ 2De-B(“-““). (16) 

Its rotationless eigenvalues are given by’ 

EN = -D[l - /3(2pD)-‘/7N + $)I”. (17) 

1 Although Morse solved the problem for the boundary condition R(- w) = 0 instead of 
R(0) = 0 the difference in resulting eigenvalues is negligible due to the steepness of the repulsive 
barrier for p --f 0. 
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With a computer program coded in FAP (assembly language) for use of the 
IBM 7094 at the University of Chicago, the eigenvalues for a Morse potential 
corresponding to the ground state of H, were computed by numerical 
integration using a uniform step size of h = 0.02 bohrs, in an integration range 
0 < p < 10 bohrs. The deviations of the computed eigenvalues from those given 
by Eq. (17) are compared with the errors as computed by Eq. (14) in Table I, 
confirming the analysis of the previous section. 

TABLE I 

Morse Potential Results with Uniform Step Size 
/3 = 1.1682997” po = 1.4 D = 0.1744746 p = 918.06 

N 
-EN -EN 

Integrated Analytical 

Actual Theoretical 
error error 

( x 106) ( x 108) 

0 0.16327187 0.16327187 0 5 
1 0.14198150 0.14198143 7 13 
2 0.12217792 0.12217775 17 23 
3 0.10386112 0.10386083 29 37 
4 0.08703 112 0.08703065 47 55 
5 0.07168785 0.07168721 64 71 
6 0.05783136 0.05783054 82 87 
7 0.04546158 0.04546059 99 100 
8 0.03457849 0.03457741 108 108 
9 0.02518208 0.02518097 111 109 

10 0.01727234 0.01727128 106 105 
11 0.01084931 0.01084834 97 93 
12 0.00591291 0.00591214 77 75 
13 0.00246323 0.00246270 53 52 
14 0.00050025 0.00050000 25 25 

e All quantities in atomic units. 

The numerical integration was started at the origin using a power series of the 
form 

R,(p) = 5 Rt’p”. 
?l=l 

(18) 

The derivation of the recursion relation for the coefficients is similar to the 
derivation of Eqs. (7) and will not be discussed here. In fact, it was found in earlier 
tests that the results are insensitive to the starting procedure used near the origin, 
the wavefunction being of order lo-l3 for Hz . Since the Morse potential falls off 
exponentially at large p, the expansion coefficients A, of Eq. (3) were assumed to 



vanish. The starting formulas thus obtained were found to be adequate since 
extending the integration range to 16 bohrs changed the highest eigenvalue, whose 
wavefunction at 10 bohrs is 0.04, by only IO-@ hartrees. 

The integrals in Eq. (2) were computed using Simpson’s rule. Fourth differences 
of G(p) R(p) were used to estimate R “I in Eq. (14), whose integration was carried 
out by the Trapezoidal Rule. 

TABLE II 
Hz Morse Potential Results with Optimized Step Size 

Au = lo-‘” (t = IO-“, ho = 0.02) 

N 

Initial No. of 
step integration 
size points 

-EN 
Integrated 

Error 
(x10’) 

0 0.0213 270 0.16327187 0.0 
1 0.0213 270 0.14198149 0.6 
2 0.0219 334 0.12217774 0.1 
3 0.0219 334 0.10386084 0.1 
4 0.0219 334 0.08703073 0.8 
5 0.0219 334 0.07168732 1.1 
6 0.0225 409 0.05783054 0.0 
7 0.0225 409 0.04546062 0.3 
8 0.0225 409 0.03457749 0.8 
9 0.0225 409 0.02518105 0.8 

10 0.0225 409 0.01727136 0.8 
11 0.023 I 547 0.01084828 0.6 
12 0.023 I 547 0.00591209 0.5 
13 0.023 I 547 0.00246269 0.1 
14 0.023 1 547 0.00049994 0.6 

a All quantities in atomic units. 

Next, eigenvalues were computed for this Morse Potential, for the same inte- 
gration range, the integration mesh being adjusted within the program to maintain 
a predetermined accuracy for the eigenvalues. The results appear in Table II. When 
the iterative process for a given eigenvalue was close to convergence, a new set 
of integration points was selected using condition (I 5) with a(p) defined as follows: 

I Au R(P)/ 4P) = t > I Np)I < t. 

Thus Au is the specification of the accuracy to which the eigenvalues were to be 
computed. Increasing v(p) where 1 R(p)1 was small allowed an increase in step size 
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without harming the overall accuracy in results. The parameter t determines the 
region over which the wavefunctions are to be computed the most accurately. 

The uniform integration mesh size h, was used to begin calculation of the first 
eigenvalue in the run. Then each succeeding eigenvalue was computed starting 
with the final mesh used for the preceding eigenvalue. To avoid unnecessary 
recomputation of potential curves, a new set of integration points was used only if 
either its eigenvalue estimate dE, or the total number of points, was significantly 
less than for the old mesh. 

The mesh optimization was initiated by requiring that Eq. (15) be satisfied with 
the “=” sign at the first nonzero mesh point. In order to avoid dangerously huge 
step sizes, it was further required that 

v(p) < 0.1 hartrees. (20) 

To facilitate later computation of fourth differences, at least four intervals were 
required between step size changes. 

As indicated by Table II, the desired accuracy was produced for all 15 eigen- 
values. The two terms in Eq. (14) were of about equal magnitude. 

Diatomic Argon Experimental Curve 

Much interest has centered on the existence of stable diatomic molecules of inert 
gases such as argon, for which several potential curves have been proposed.” 
Recently Tanaka and Yoshino [l l] have reported band structure in the ultraviolet 
absorption spectrum of argon which they attributed to transitions from six vibra- 
tional levels of the ground state of diatomic argon to various excited electronic 
states. Their data provides a sensitive test for proposed potential curves. To test 
such curves, a numerical vibrational program is needed which will carry out the, 
numerical integration accurately and take proper account of the boundary 
conditions, particularly at large p where the wavefunctions for high vibrational 
states are very flat. The above described program meets these requirements. 

The vibrational levels were computed for an Ar, potential curve obtained from 
collision data [12] and numerically tabulated in Table III. The results appear in 
Table IV. A mesh, with an initial interval size of 0.038 bohrs, and consisting of less 
than 300 points for an integration range 1.4 < p < 36 bohrs, was found adequate 
to yield all eigenvalues to an accuracy of lOA hartrees. The mesh optimization was 
initiated at p E 3.8 bohrs, the first point at which R was not zero upon normal- 
ization (the minimum floating point number on the 7094 is ~10-~*), with the same 
step size used from p = 1.4 bohrs to that point. The round-off error contribution 
to Eq. (14) was at most 1O-s hartrees. 

*See Ref. [ll] for list of papers on this subject. 
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TABLE III” 
Ar, Experimental Potential 

1.42110 0.4527886 x IO' 
1.84743 0.2333822 x 10’ 
2.27376 0.1198877 x lo* 
2.70009 0.6123605 
2.98431 0.3894445 
3.26853 0.2463902 
3.55275 0.1548289 
3.83697 0.9643743 x 10-l 
4.12119 0.5937867 x 10-l 
4.40541 0.3600746 x 10-l 
4.68963 0.2138950 x 10-l 
4.97385 0.1234423 x 10-l 
5.25807 0.6825844 x lo-" 
5.54229 0.3522434 x lo-’ 
5.68440 0.2426079 x 1O-2 
5.82651 0.1596185 x 1O-2 
5.96862 0.9745518 x lo-$ 
6.11073 0.5149804 x 1O-3 
6.25284 0.1808735 x 1O-3 
6.39495 -0.5668366 x lo-” 
6.53706 -0.2204701 x 1Om3 
6.67917 -0.3262631 x 1O-3 
6.82128 -0.3881013 x 10m3 
6.96339 -0.4185834 x 1O-3 
7.10550 -0.4270881 x 1O-s 
7.38972 -0.4040972 x 1O-3 
7.67394 -0.3552227 x lo-” 
7.95816 -0.3013731 x 10-S 
8.24238 -0.2523707 x 10m3 
8.52660 -0.2086210 x 1O-3 
8.81082 -0.1703752 x 10m3 
9.09504 -0.1378853 x 10m3 
9.37925 -0.1114028 x lo-” 
9.66348 -0.9117964 x lo-* 

d Since the calculation described here was performed a revised version of this data has been 
reported [13]. 

b All quantities in atomic units. 
c For p > 9.66348, U(p) = -68.88~~~ - 498.45~~“. 

The results in Column II were obtained using fifth degree polynomials to inter- 
polate U(p) between the tabulated points in Table III. The numbers in parentheses 
are these results minus those obtained by cubic polynomials. 



OPTIMIZED DIATOMIC CALCULATIONS 565 

TABLE IV 

Results for Experimental Ar, Potential 
p = 36420.2” h, = 0.02 Au = 10-S f = 10-0 

N EN x lo4 AGN+I/~ X 104 AGN+~/~ X lO”(TY)” 

3.5908(-0.0015) I.1648 1.162 * 0.050 
2.4260(-O.OUO9) 0.9026 0.948 5 0.059 
1.5234(-0.0005) 0.6780 0.702 * 0.055 
0.8454( -0.0004) 0.4336 0.478 rt 0.046 
0.4118(-0.0001) 0.2486 0.365 
0.1632(-0.0001) 0.1198 
0.0434( -0.0001) 0.0395 
0.0039(-0.0ooo) 

a All quantities in atomic units. 
b Results are averages over Tanaka-Yoshino data over all measurements. Errors are standard 

deviations. 

The integration of R, was started, as before, by a power series in p. For large p, 
if we retain only the first two nonvanishing terms of Eq. (4), then from the p-6 
dependence of U(p) (see Table HI) and Eqs. (4)-(7) we obtain for J = 0 

R,(p) = N&-“‘[I + /4/(5EP5)1. 

Since at 36 bohrs the wavefunction for N = 7 had a value of more than l/IO its 
maximum, the computations were carried out both with and without the p-5 term 
in Eq. (21). Neglect of this term is equivalent to the assumption that U = 0 for 
large p while its inclusion tends to overcorrect (see Appendix). Hence the eigen- 
values obtained in these two cases form upper and lower limits for the true 
eigenvalues. The results deviated by less than 10s8 hartrees showing that the 
asymptotic starting procedure was adequate. 

As can be seen from Table IV, the separations LIG,,,+~,~ , of the successive 
eigenvalues, for N < 4, deviate from those obtained by Tanaka and Yoshino by 
less than the experimental error of their results. The only measurement of AC,,, 

made by them is not inconsistent with our results if one takes account of the 
possibility that there actually may be eight vibrational levels, the highest three not 
being resolved spectroscopically. 

APPENDIX 

The large p dependence of the potential curve used was 

‘(f> = A6p-6 + -‘&f+, 
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where 
A, = -68.88, 

A, = -498.45, 

with U in hartrees and p in bohrs. 
Whereas the correct wavefunction satisfies 

R” = GR, (A3) 

it may be shown that the approximate functions 

satisfy, respectively, 

where 

R, zzcz e-c@, 

8, = e-Ep[l + pAg/(5~p5)], 

R; = gR, , 

8; = gR, ) 

L42) 

(A4) 

(A5) 

and 

g = G - 2/d& 

E = G + 6@,/[~p’r(p)] - 2$AJ[5~pl’r(p)] - 2/~A,p-~, 

r = ecOR, . 

b46) 

(A7) 

From the values of A, and A, and the reduced mass of Ar, , 

p = 36420.2 a.u., 648) 

it may be verified for p 3 36 bohrs and all eigenvalues of Table IV that 

g<G<g. (A9) 

This establishes the statement that while the asymptotic dependence R, of (A4) 
is equivalent to neglecting U for large p, R, is equivalent to using an attractive 
potential U whose magnitude is larger than U. 
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